Abstract
A morphometric analysis of the gills ofOreochromis alcalicus grahami has been carried out on specimens from ecologically distinct lagoons and a water-holding tank of Lake Magadi, a highly alkaline salt lake situated in a volcanically active region of the southern part of the Great Rift Valley in Kenya. The data were compared with those fromOreochromis niloticus, a close relative that lives in fresh water and with data from other fresh water and marine fish. Our primary goal was to identify the possible adaptive features which enable the fish to survive in an environment characterized by severely fluctuating levels of oxygen, a condition exacerbated by factors such as high temperature, alkalinity and osmolarity. The specimens ofO. a. grahami from the south-western lagoons of the lake had gills better adapted for gas exchange with a body mass specific diffusing capacity for oxygen which was about 2 times greater than that of the gills of the specimens from the fish spring lagoons and 2.5 times that of those from the water-holding tanks. Some parameters of the gills ofO. a. grahami, e.g. the gill filament length and number of gill filaments are significantly greater than those ofO. niloticus but the number of secondary lamellae, area of secondary lamellae and the diffusing capacity of the gills are similar in the two species. Compared with most other fish, the gills ofO. a. grahami appear to be particularly well adapted for gas exchange especially by having a thin water-blood barrier. Perhaps in no other extant fish have the gills had to be so exquisitely designed to meet environmental extremes and regulate complex and at times conflicting functions such as gas exchange, iono-regulation, acid-base balance and nitrogenous waste excretion as inO. a. grahami
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.