Abstract

Ab initio studies of the electronic band structure and phonon dispersion relations, using the planewave pseudopotential method and the density functional theory, have been made for the superconducting materials YC2 and LaC2. Differences in the phonon spectrum and density of states both in the acoustical and optical ranges between these materials are investigated and discussed. By integrating the Eliashberg spectral function α2F(ω), the average electron-phonon coupling parameter is found to be λ = 0.55 for YC2 and 0.54 for LaC2, indicating these to be weak-coupling BCS superconductors. It is established that about 60% of λ is contributed by acoustic phonons in both materials. Using a reasonable value of μ* = 0.13 for the effective Coulomb repulsion parameter, the superconducting critical temperature Tc is found to be 3.81 K for YC2 and 2.44 K for LaC2, in good agreement with values reported from experimental measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call