Abstract

We design a compact cavity-backed antenna structure where a dielectric resonator (DR) element is surrounded by a meandered circular slot ring to enhance radiation efficiency. The DR for the antenna is cylindrical in shape, and four degenerate HE 11δ modes are excited and driven by four, quadrature-fed aperture-coupled slots. Such a compact implementation hybridizes operation of the DR with the miniaturized ring as well as the four aperture-coupled slots for circular polarization. Measured realized gain values are greater than 5 dBic from 1.14 to 1.55 GHz defining a bandwidth of more than 30%. In addition, the half-power and 3-dB axial-ratio beamwidths were measured to be more than 100 ° and 200 °, respectively. The proposed design technique to employ such a secondary meandered slot ring may also be useful to improve antenna gain, bandwidth, and efficiency for other antenna and array structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.