Abstract

A compact ultrahigh vacuum (UHV) system has been built to study growth and properties of III/V semiconductor surfaces and nanostructures. The system allows one to grow III/V semiconductor surfaces by molecular beam epitaxy (MBE) and analyze their surface by a variety of surface analysis techniques. The geometric structure is examined by scanning tunneling microscopy (STM), low-energy electron diffraction and reflection high-energy electron diffraction. The electronic properties of the surfaces are studied by angular resolved photoemission either in the laboratory using a helium discharge lamp or at the Berlin Synchrotron Radiation Facility BESSY. In order to meet the space restriction at BESSY the system dimensions are kept very small. A detailed description of the apparatus and the sample handling system is given. For the UHV-STM (Park Scientific Instruments, VP2) a new, versatile tip handling mechanism has been developed. It allows the transfer of tips out of the chamber and furthermore, the in situ tip cleaning by electron annealing. In addition, another more reliable in situ tip-preparation technique operating the STM in the field emission regime is described. The ability of the system is shown by an atomically resolved STM image of the c(4×4) reconstructed GaAs(001) surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.