Abstract

In this paper, a compact-size multiple-band planar inverted L-C implantable antenna is proposed. The compact antenna has a size of 20 mm × 12 mm × 2.2 mm and consists of planar inverted C-shaped and L-shaped radiating patches. The designed antenna is employed on the RO3010 substrate (εr = 10.2, tanδ = 0.0023, and thickness = 2 mm). An alumina layer with a thickness of 0.177 mm (εr = 9.4 and tanδ = 0.006) is used as the superstrate. The designed antenna operates at triple-frequency bands with a return loss of -46 dB at 402.5 MHz, -33.55 dB at 2.45 GHz, and -41.4 dB at 2.95 GHz, and provides a size reduction of 51% compared with the conventional dual-band planar inverted F-L implant antenna designed in our previous study. In addition, the SAR values are within the safety limits with a maximum allowable input power (8.43 mW (1 g) and 47.5 mW (10 g) at 402.5 MHz; 12.85 mW (1 g) and 47.8 mW (10 g) at 2.45 GHz; and 11 mW (1 g) and 50.5 mW (10 g) at 2.95 GHz). The proposed antenna operates at low power levels and supports an energy-efficient solution. The simulated gain values are -29.7 dB, -3.1 dB, and -7.3 dB, respectively. The suggested antenna is fabricated and the return loss is measured. Our findings are then compared with the simulated results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call