Abstract

Various differentiable physical models are frequently used to describe the dynamics of laser-produced plasma plumes (e.g., kinetic models, two-fluid models, etc.). Given the complexity of all the phenomena involved in the laser-matter interactions, it is required to introduce the laser ablation plasma dynamic variable dependencies both on the space-time coordinates and on the resolution scales. Therefore, an adequate theoretical approach may be the use of non-differentiable physical models (fractal models). Continuing our previous work on the fractal hydrodynamic model for laser ablation plasma dynamics, we propose here a compact version for the analysis of the spatial and temporal evolution of some plasma dynamic variables, such as velocities, currents, number densities, or temperatures. Moreover, the influence of external factors on the ablation plasma dynamics is considered. The predictions of this model are compared with the experimental data obtained by using a Langmuir probe on an Aluminum laser-produced plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call