Abstract

In this paper, a compact ambient gas sensor with an optimized photoacoustic cell is reported. The relationship between the geometric dimensions (usually radius and length) of the photoacoustic cell (PAC) and the acoustic signal was studied through theoretical and finite element analysis. Then an optimized H-type PAC with a volume of 80 mm × 30 mm × 30 mm was machined out. The gas capacity is only 18.85 millilitres. The performance of the photoacoustic cell has been verified experimentally by the detection of nitrogen dioxide (NO2) standard gas. With an electret microphone and an economically self-designed 450 nm laser module, the detection of NO2 concentration was executed. The experimental results show good linearity with a fitting R-square of 0.9991. With an SNR (signal-to-noise ratio) of 41.247, the minimum detection limit (MDL) of the system can reach 4.85 ppb (1σ). With an analysis of allan variance, the MDL can achieve 0.11 ppb with a 228 s integration time. By replacing the light source, the system shows great potential for sensitive and compact detectors for other ambient gasses as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call