Abstract

An efficient cooling system consisting of a plate, on which copper nanorods (nanorods of size ∼100nm) are integrated to copper thin film (which is deposited on Silicon substrate), a heater, an Aluminum base, and a pool was developed. Heat is transferred with high efficiency to the liquid within the pool above the base through the plate by boiling heat transfer. Near the boiling temperature of the fluid, vapor bubbles started to form with the existence of wall superheat. Phase change took place near the nanostructured plate, where the bubbles emerged from. Bubble formation and bubble motion inside the pool created an effective heat transfer from the plate surface to the pool. Nucleate boiling took place on the surface of the nanostructured plate helping the heat removal from the system to the liquid above. The heat transfer from nanostructured plate was studied using the experimental setup. The temperatures were recorded from the readings of thermocouples, which were successfully integrated to the system. The surface temperature at boiling inception was 102.1°C without the nanostructured plate while the surface temperature was successfully decreased to near 100°C with the existence of the nanostructured plate. In this study, it was proved that this device could have the potential to be an extremely useful device for small and excessive heat generating devices such as MEMS or Micro-processors. This device does not require any external energy to assist heat removal which is a great advantage compared to its counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call