Abstract

The aim of this paper is to introduce a compact model for perpendicular spin-transfer torque (STT)-magnetic tunnel junctions (MTJs) implemented in Verilog-A to assure easy integration with electrical circuit simulators. It takes into account the effects of voltage-dependent perpendicular magnetic anisotropy, temperature-dependent parameters, thermal heating/cooling, MTJ process variations, and the spin-torque asymmetry of the Slonczewski spin-polarization function in the switching process. This translates into a comprehensive modeling that was adopted to investigate the writing performance under voltage scaling of a $256\times256$ STT- magnetic random access memory array implemented at three different technology nodes. Obtained results show that scaling from 30- to 20-nm node allows a write energy saving of about 43%, while the supply voltage that assures the minimum-energy write operation increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.