Abstract
Carbon nanotubes have excellent electrical properties and can be used as a new generation of semiconductor materials. This paper presents a compact model for carbon nanotube field-effect transistors (CNTFETs). The model uses a semi-empirical approach to model the current–voltage properties of CNTFETs with gate lengths exceeding 100 nm. This study introduces an innovative approach by proposing physical parametric reference lengths (Lref), which facilitate the integration of devices of varying sizes into a unified modeling framework. Furthermore, this paper develops models for the bipolar properties of carbon nanotube devices, employing two distinct sets of model parameters for enhanced accuracy. The model offers a comprehensive analysis of the different capacitances occurring between the electrodes within the device. The simulation of the model shows good agreement with the experimental measurements, confirming the model’s validity. The model is implemented in the Verilog-A hardware description language, with the circuit being subsequently constructed and subjected to simulations via the HSPICE tool. The CNTFET-based inverter exhibits a gain of 7.022 and a delay time of 16.23 ps when operated at a voltage of 1.2 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.