Abstract
We have previously reported a novel approach to implementing multiplex enzyme-linked immunosorbent assay (ELISA) in connected microchannels by exploiting the slow diffusion of the enzyme reaction product across the different assay segments. This work builds on that report by implementing the noted assay in segments arranged along the circumference of a circular channel layout to reduce the footprint size and sample volume requirement. Using the current design, a 5-plex cytokine ELISA was demonstrated in a 1.5×1.5-cm region, which corresponded to a reduction in the footprint area by about a factor of 3 compared to that reported in our previous study. Additionally, the selective coating of our assay segments with the target molecules was realized in this work using electroosmosis instead of hydrodynamic flow as was the case in the previous report. This aspect of our experimental design is particularly significant as it permits the use of cross-sectional channel dimensions significantly shorter than those employed in the current work. Moreover, the use of an electric field for coating purposes enables the integration of functionalities such as electrokinetic preconcentration of analyte molecules during the sample incubation period that can further enhance the capabilities of our assay method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.