Abstract

Direct linear programming (LP) solution to binary sub-modular MRF energy has recently been promoted because i) the solution is identical to the solution by graph cuts, ii) LP is naturally parallelizable and iii) it is flexible in incorporation of constraints. Nevertheless, the conventional LP relaxation for MRF incurs a large number of auxiliary variables and constraints, resulting in expensive consumption in memory and computation. In this work, we propose to approximate the solution of the conventional LP at a significantly smaller complexity by solving a novel compact LP model. We further establish a tightenable approximation bound between our LP model and the conventional LP model. Our LP model is obtained by linearizing a novel l 1-norm energy derived from the Cholesky factorization of the quadratic form of the MRF energy, and it contains significantly fewer variables and constraints compared to the conventional LP relaxation. We also show that our model is closely related to the total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. The latter property is very desirable in most of the imaging and vision applications. In the experiments, our method achieves similarly satisfactory results compared to the conventional LP, yet it requires significantly smaller computation cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.