Abstract

A recently developed enhanced Fourier law is applied to the problem of extracting thermal properties of materials from frequency-domain thermoreflectance (FDTR) experiments. The heat transfer model comprises contributions from two phonon channels: one a high-heat-capacity diffuse channel consisting of phonons of mean free path (MFP) less than a threshold value, and the other a low-heat-capacity channel consisting of phonons with MFP higher than this value that travel quasi-ballistically over length scales of interest. The diffuse channel is treated using the Fourier law, while the quasi-ballistic channel is analyzed using a second-order spherical harmonic expansion of the phonon distribution function. A recent analysis of FDTR experimental data suggested the use of FDTR in deriving large portions of the MFP accumulation function; however, it is shown here that the data can adequately be explained using our minimum-parameter model, thus highlighting an important limitation of FDTR experiments in exploring the accumulation function of bulk matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.