Abstract
This paper presents a novel compact circuit combining function of gate control and voltage balancing for series-connected silicon carbide (SiC) metal–oxide–semiconductor field-effect transistor (MOSFET). Two series-connected SiC MOSFETs with the proposed circuit only require a single standard gate driver to achieve the gate control and voltage balancing during both steady-state and switching transition. Moreover, the proposed circuit is only composed of ten passive components. Therefore, the proposed circuit provides a low-cost and highly reliable method to increase the blocking voltage of the SiC MOSFET. The operation principles of the proposed circuit are theoretically analyzed. In addition, the high-blocking-voltage device is not only required in switching-mode power supply (SMPS) but also in dc-breaker applications. The proposed circuit is then modified to make it suitable to the dc-breaker applications. The simulation and experimental results validate the effectiveness and superiority of the proposed circuit in both SMPS and dc-breaker applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.