Abstract

A well designed compact furnace has been designed for in situ X-ray absorption spectroscopy (XAS). It enables various heat ramps from 300 K to 1473 K. The furnace consists of heaters, a quartz tube, a circulated refrigerator and a power controller. It can generate ohmic heating via an induction process with tantalum filaments. The maximum heating rate exceeds 20 K min-1. A quartz tube with gas feedthroughs allows the mixing of gases and adjustment of the flow rate. The use of this compact furnace allows in situ XAS investigations to be carried outin transmission or fluorescence modes under controlled temperature and atmosphere. Moreover, the furnace is compact, light and well compatible to XAS. The furnace was used to study cationic oxidation states in Pr6O11 and NiO compounds under elevated temperature and reduced atmosphere using the insitu X-ray absorption near-edge structure (XANES) technique at beamline 5.2 SUT-NANOTEC-SLRI of the Synchrotron Light Research Institute, Thailand. At room temperature, Pr6O11 contains a mixture of Pr3+ and Pr4+ cations, resulting in an average oxidation state of +3.67. In situ XANES spectra of Pr (L3-edge) show that the oxidation state of Pr4+ cations was totally reduced to +3.00 at 1273 K under H2 atmosphere. Considering NiO, Ni2+ species were present under ambient conditions. At 573 K, the reduction process of Ni2+ occurred. The Ni0/Ni2+ ratio increased linearly with respect to the heating temperature. Finally, the reduction process of Ni2+ was completely finished at770 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call