Abstract

By utilizing a Fabry—Perot (FP) nanocavity adjacent to T-shaped gap waveguide ports, spectrally selective filtering is realized. When the wavelength of incident light corresponds to the resonance wavelength of the FP nanocavity, the surface plasmons are captured inside the nanocavity, and light is highly reflected from this port. The resonance wavelength is determined by using Fabry—Perot resonance condition for the nanocavity. For any desired filtering frequency the dimension of the nanocavity can be tailored. The numerical results are based on the two-dimensional finite difference time domain simulation under a perfectly matched layer absorbing boundary condition. The analytical and simulation results indicate that the proposed structure can be utilized for filtering and splitting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call