Abstract

Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation is different from the traditional heat diffusion equation since a second-order derivative of temperature with respect to time and a third-order mixed derivative of temperature with respect to space and time are introduced. In this study, we develop a high-order compact finite-difference scheme for the heat transport equation at the microscale. It is shown by the discrete Fourier analysis method that the scheme is unconditionally stable. Numerical results show that the solution is accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.