Abstract

Abstract Two novel TiO 2 sensitizers, based on the highly stable diketopyrrolopyrrole (DPP) skeleton, have been synthesized for application in the field of dye sensitized solar cells. The obtained dyes, DPP1 and DPP2 bear respectively a cyanoacrylic acid and a rhodanine acid anchoring groups, thus tuning the extent of the electronic communication with the semi-conducting oxide. The two chromophores were characterized by solution phase spectroscopy and electrochemistry. DFT calculations gave deeper insight into the electronic structure of both dyes, through the disclosure of their frontier orbitals. Photovoltaic performances unravelled the undisputable advantage of DPP1 over DPP2 , owing to the combination of a favourable dipolar moment interaction with TiO 2 , and more intimate orbital blending between the chemisorbed dye and the conduction band. Chenodeoxycholic acid proved to be useful in limiting the formation of dye aggregates, improving to a great extent the performances of DPP1 based DSSCs, reaching in our conditions a 4.47% yield and 57% IPCE at 500 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.