Abstract
A compact C0 discontinuous Galerkin (CCDG) method is developed for solving the Kirchhoff plate bending problems. Based on the CDG (LCDG) method for Kirchhoff plate bending problems, the CCDG method is obtained by canceling the term of global lifting operator and enhancing the term of local lifting operator. The resulted CCDG method possesses the compact stencil, that is only the degrees of freedom belonging to neighboring elements are connected. The advantages of CCDG method are: (1) CCDG method just requires C0 finite element spaces; (2) the stiffness matrix is sparser than CDG (LCDG) method; and (3) it does not contain any parameter which can not be quantified a priori compared to C0 interior penalty (IP) method. The optimal order error estimates in certain broken energy norm and H1‐norm for the CCDG method are derived under minimal regularity assumptions on the exact solution with the help of some local lower bound estimates of a posteriori error analysis. Some numerical results are included to verify the theoretical convergence orders. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1265–1287, 2015
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.