Abstract
Accurate estimations of battery state-of-charge (SOC) for energy storage systems are popular research topics in recent years. Numerous challenges remain in several aspects, especially in dealing with the conflict of high model accuracy and complex model structure with heavy computational cost. This paper proposes a compact and optimized SOC estimation model, integrating a fast input selection algorithm to choose important terms as input variables, followed by a simple and efficient JAYA optimization scheme to tune the key parameters of neural network functions. From the real-system experiment results, it can be seen that the estimation model errors are greatly reduced by applying optimization method, and the model performance is validated through statistical error values including root mean square error, mean absolute error, mean absolute percentage error and SOC error. The experimental results demonstrate that the SOC estimations can be greatly improved after optimization of neural network parameters under different charging and discharging process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.