Abstract

In this article, a stochastic finite-difference time-domain (S-FDTD) method is proposed for analyzing the influence of physical size uncertainty on the time-domain response of superconducting transmission lines. The formulations of the proposed method are, in detail, derived with the two-fluid model and London equation. A typical superconducting microstrip line is simulated to verify the effectiveness of the proposed algorithm. Compared with the Monte Carlo simulation, the proposed method has the same accuracy but much higher efficiency. The computation time of the proposed S-FDTD method is only about 3% of that of the Monte Carlo simulation. Therefore, the proposed method shows a promising prospect on predicting the variability in transmission line's performance caused by variation in superconducting manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.