Abstract
Emerging high-end portable electronics demand on-chip integration of high-performance dc---dc power supplies not only to save pin count, printed circuit board (PCB) real estate, and the cost of off-chip components but also to better regulate the point of load (PoL). In the face of a widely variable LC filter, however, integrating the frequency-compensation circuit is difficult without sacrificing stability performance, which is why integrated controller ICs only cater to relatively narrow LC ranges. While ΣΔ control addresses this LC compliance issue in buck dc---dc converters with high equivalent series resistance (ESR) output capacitors, it is not clear how it applies to ΣΔ boost converters. To that end, this paper discusses, analyzes, and experimentally evaluates a prototyped 0.6 μm CMOS differential ΣΔ boost converter. Experimental results verified the switching supply was stable across 1---30 μH, 1---350 μF, and 5---50 m? of inductance, capacitance, and ESR while keeping output voltage variations in response to 0.1---0.8 A load and 2.7---4.2 V line changes to less than ±1.5%, peak efficiency at 95%, and switching frequency variation to less than 27%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.