Abstract

To develop a method of compact tabletop magnetic resonance elastography (MRE) for rheological tests of tissue samples and to measure changes in viscoelastic powerlaw constants of liver and brain tissue during progressive fixation. A 10-mm bore, 0.5-T permanent-magnet-based MRI system was equipped with a gradient-amplifier-controlled piezo-actuator and motion-sensitive spin echo sequence for inducing and measuring harmonic shear vibrations in cylindrical samples. Shear modulus dispersion functions were acquired at 200-5700 Hz in animal tissues at different states of formalin fixation and fitted by the springpot powerlaw model to obtain shear modulus μ and powerlaw exponent α. In a frequency range of 300-1500 Hz, unfixed liver tissue was softer and less dispersive than brain tissue with μ = 1.68 ± 0.17 kPa and α = 0.51 ± 0.06 versus μ = 2.60 ± 0.68 kPa and α = 0.68 ± 0.03. Twenty-eight hours of formalin fixation yielded a 400-fold increase in liver μ, 25-fold increase in brain μ, and two-fold reduction in α of both tissues. Compact 0.5-T MRE facilitates automated measurement of shear modulus dispersion in biological tissue at low costs. Formalin fixation changes the viscoelastic properties of tissues from viscous-soft to elastic-stiff more markedly in liver than brain. Magn Reson Med 79:470-478, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.