Abstract
Premised on relatively simple assumptions, mathematical models like those of Monod, Pirt or Droop inadequately explain the complex transient behavior of microbial populations. In particular, these models fail to explain many aspects of the dynamics of a Tetrahymena pyriformis-Escherichia coli community. In this study an alternative approach, an individualbased model, is employed to investigate the growth and interactions of Tetrahymena pyriformis and E. coli in a batch culture. Due to improved representation of physiological processes, the model provides a better agreement with experimental data of bacterial density and ciliate biomass than previous modeling studies. It predicts a much larger coexistence domain than rudimentary models, dependence of biomass dynamics on initial conditions (bacteria to ciliate biomasses ratio) and appropriate timing of minimal bacteria density. Moreover, it is found that accumulation of E. coli sized particles and E. coli toxic metabolites has a stabilizing effect on the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.