Abstract

The proposed scheme in this research paper is a communication-less islanding detection system based on recurrent neural network (RNN) for hybrid distributed generator (DG) systems that include both synchronous and inverter-based DG devices. The scheme consists of three stages: time-domain feature extraction (FE) from the three-phase voltage signal at the point of common coupling (PCC), feature selection using the wrapper method, and detection using a long short-term memory (LSTM) RNN algorithm. To assess the performance of the proposed scheme, a comprehensive set of islanding and grid-connected scenarios was created using the IEC 61850-7-420 test system in MATLAB/Simulink. After feature extraction in MATLAB, the feature selection and LSTM model training/testing steps were conducted in Python. Thirteen features were extracted from the voltage signal, and the most significant features were selected for detection using the wrapper method. The detection process encompassed various events, such as line faults, load switching, and capacitor switching, occurring in both islanded and grid-connected modes. The proposed scheme was compared against existing techniques, artificial neural networks, and support vector machines under the same conditions. The proposed scheme demonstrated excellent accuracy (99.68 %), selectivity (99.44 %), and sensitivity (100 %) under normal conditions with all features. It also performed well in noisy environments, with accuracies of 98.94 % and 97.04 % with 40 dB and 30 dB noise, respectively. This research highlights the importance of quality and quantity of data for training intelligent RNN-based IDSs and demonstrates the effectiveness of the proposed scheme in detecting islanding in hybrid DG systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.