Abstract

The bulk synchronous parallel (BSP) model is very user friendly for coding and debugging parallel graph algorithms. However, existing BSP-based distributed graph-processing frameworks, such as Pregel, GPS and Giraph, routinely suffer from high communication costs. These high communication costs mainly stem from the fine-grained message-passing communication model. In order to address this problem, we propose a new computation model with low communication costs, called LCC-BSP. We use this model to design and implement a high-performance distributed graph-processing framework called LCC-Graph. This framework eliminates high communication costs in existing distributed graph-processing frameworks. Moreover, LCC-Graph also balances the computation workloads among all compute nodes by optimizing graph partitioning, significantly reducing the computation time for each superstep. Evaluation of LCC-Graph on a 32-node cluster, driven by real-world graph datasets, shows that it significantly outperforms existing distributed graph-processing frameworks in terms of runtime, particularly when the system is supported by a high-bandwidth network. For example, LCC-Graph achieves an order of magnitude performance improvement over GPS and GraphLab.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call