Abstract

Large-scale distributed training mainly consists of sub-model parallel training and parameter synchronization. With the expansion of training workers, the efficiency of parameter synchronization will be affected. To tackle this problem, we first propose 2D-TGA, a grouping AllReduce method based on the two-dimensional torus topology. This method synchronizes the model parameters by grouping and makes full use of bandwidth. Secondly, we propose a distributed algorithm, 2D-TGA-ADMM, which combines the 2D-TGA with the alternating direction method of multipliers (ADMM). It focuses on sub-model training and reduces the wait time among workers in the synchronization process. Finally, experimental results on the Tianhe-2 supercomputing platform show that compared with the {mathtt {MPI_Allreduce}}, the 2D-TGA could shorten the synchronization wait time by 33%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.