Abstract
Comparative neuroscience is entering the era of big data. New high-throughput methods and data-sharing initiatives have resulted in the availability of large, digital data sets containing many types of data from ever more species. Here, we present a framework for exploiting the new possibilities offered. The multimodality of the data allows vertical translations, which are comparisons of different aspects of brain organization within a single species and across scales. Horizontal translations compare particular aspects of brain organization across species, often by building abstract feature spaces. Combining vertical and horizontal translations allows for more sophisticated comparisons, including relating principles of brain organization across species by contrasting horizontal translations, and for making formal predictions of unobtainable data based on observed results in a model species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.