Abstract

The California poppy (Eschscholzia californica) is renowned for its brilliant golden-orange flowers, though white petal variants have been described. By whole-transcriptome sequencing, we have discovered in multiple white petal varieties a single deletion leading to altered splicing and C-terminal truncation of phytoene synthase (PSY), a key enzyme in carotenoid biosynthesis. Our findings underscore the diverse roles of phytoene synthase in shaping horticultural traits, and resolve a longstanding mystery of the regaled golden poppy.

Highlights

  • The California poppy (Eschscholzia californica), known as the golden poppy, is native to the West Coast of the United States[1,2]

  • Since no poppy reference genome was available, RNAseq reads were assembled de novo into transcript contigs, which were annotated by homology to an orthologous reference transcriptome, for which we selected another eudicot clade flowering plant, the garden tomato (Solanum lycopersicum)

  • Comparing expression of carotenoid biosynthesis genes between white and orange poppy varieties, only phytoene synthase (PSY) showed significantly altered expression, with an average 2.5-fold reduced transcript levels in white varieties (P = 0.003, two-sided Student’s t-test) (Fig. 1a, right). While this finding focused attention on PSY, the modest reduction in white varieties was unlikely to account for a near absence of carotenoid pigment

Read more

Summary

Introduction

The California poppy (Eschscholzia californica), known as the golden poppy, is native to the West Coast of the United States[1,2]. To investigate the genetic basis of white-petal poppy variants, we carried out transcriptome sequencing (RNAseq) of developing flower buds from four different commercial white poppy varieties displaying varied shades of white: Ivory Castle, White Linen, Alba, and White (Fig. 1b).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.