Abstract

BackgroundOptimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications. Their utility for quantitatively predicting phenotypic evolution can be tested experimentally. One such model predicts optimal bacteriophage lysis interval, how long a virus should produce progeny before lysing its host bacterium to release them. The genetic basis of this life history trait is well studied in many easily propagated phages, making it possible to test the model across a variety of environments and taxa.ResultsWe adapted two related small single-stranded DNA phages, ΦX174 and ST-1, to various conditions. The model predicted the evolution of the lysis interval in response to host density and other environmental factors. In all cases the initial phages lysed later than predicted. The ΦX174 lysis interval did not evolve detectably when the phage was adapted to normal hosts, indicating complete failure of optimality predictions. ΦX174 grown on slyD-defective hosts which initially entirely prevented lysis readily recovered to a lysis interval similar to that attained on normal hosts. Finally, the lysis interval still evolved to the same endpoint when the environment was altered to delay optimal lysis interval. ST-1 lysis interval evolved to be ~2 min shorter, qualitatively in accord with predictions. However, there were no changes in the single known lysis gene. Part of ST-1's total lysis time evolution consisted of an earlier start to progeny production, an unpredicted phenotypic response outside the boundaries of the optimality model.ConclusionsThe consistent failure of the optimality model suggests that constraint and genetic details affect quantitative and even qualitative success of optimality predictions. Several features of ST-1 adaptation show that lysis time is best understood as an output of multiple traits, rather than in isolation.

Highlights

  • Optimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications

  • The lysis interval remained longer than the optimality model predicted

  • Lysis time is the sum of eclipse and lysis interval and the model assumes that eclipse time is fixed and that the optimal lysis time is achieved by changes in the lysis interval

Read more

Summary

Introduction

Optimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications. Their utility for quantitatively predicting phenotypic evolution can be tested experimentally. At one end of the spectrum are optimality models, which predict phenotypic evolution based on natural selection in the context of ecology, often neglecting genetics except in the form of simple ‘trade-offs’ between phenotypic alternatives. The appeal of such models is in their apparent generality, enabling prediction across a wide variety of. Such direct comparisons of the two approaches are essential in resolving the merits of genetic details in understanding evolution

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.