Abstract

The reactive center of C1-inhibitor, a plasma protease inhibitor that belongs to the serpin superfamily, is located on a peptide loop which is highly susceptible to proteolytic cleavage. With plasma kallikrein, C1s and beta-Factor XIIa, this cleavage occurs at the reactive site residue P1 (Arg444); with neutrophil elastase, it takes place near P1, probably at residue P3 (Val442). After these cleavages, C1-inhibitor is inactivated and its conformation is modified. Moreover, in vivo, cleaved C1-inhibitor is removed from the blood stream more rapidly than the intact serpin, which suggests that proteolysis unmasks sites responsible for cellular recognition and the uptake of the cleaved inhibitor. In the study reported here, we show, using an MAb, that an identical neoepitope is created on C1-inhibitor after the cleavage of its exposed loop by plasma kallikrein, C1s, beta-Factor XIIa, and by neutrophil elastase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.