Abstract

A common-mode voltage (CMV) suppression strategy, namely double zero-sequence injection common-mode voltage (DZICMV), is proposed in this paper for an asymmetrical six-phase induction motor fed by two-level dual three-phase voltage source inverters (VSIs). In this strategy, the sinusoidal waveforms injected by double zero-sequence signals are employed as modulation signals, and two opposite triangular waveforms are used as carriers. The fundamental period is divided into 24 sectors. In each sector, the carrier used by the medium amplitude phase is distinct from the carriers used by the other two phases in each set of three-phase windings. Using this method, the zero vectors (000) and (111) in each set of three-phase windings can be eliminated, and the peak values of sub-CMV and total CMV can be reduced from ±Udc/2 to ±Udc/6. The experiment results show that the root mean square (RMS) value of common-mode leakage current in DZICMV can be reduced by 51.83% compared with the double zero-sequence injection PWM (DZIPWM) strategy. It is also found in the other four existing benchmark CMV suppression strategies that the peak values of sub-CMV therein are nearly all ±Udc/2, and only in the low linear modulation region could one of these strategies suppress sub-CMV peak values to ±Udc/6. However, the proposed DZICMV can suppress the sub-CMV peak values to ±Udc/6 in the whole linear modulation range. Moreover, the maximum linear modulation index of the DZICMV is 1.15, which is larger than that of the four benchmark strategies, whose maximum modulation index is 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call