Abstract

Many nuclear proteins are inactivated during mitotic entry, presumably as a prerequisite to chromatin condensation and cell division. C2H2 zinc fingers define the largest transcription factor family in the human proteome. The linker separating finger motifs is highly conserved and resembles TGEKP in more than 5000 occurrences. However, the reason for this conservation is not fully understood. We demonstrate that all three linkers in the DNA-binding domain of Ikaros are phosphorylated during mitosis. Phosphomimetic substitutions abolished DNA-binding and pericentromeric localization. A linker within Sp1 was also phosphorylated, suggesting that linker phosphorylation provides a global mechanism for inactivation of the C2H2 family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.