Abstract
The catecholamine release-inhibitor catestatin and its precursor chromogranin A (CHGA) may constitute "intermediate phenotypes" in the analysis of genetic risk for cardiovascular disease such as hypertension. Previously, the vacuolar H(+)-ATPase subunit gene ATP6V0A1 was found within the confidence interval for linkage with catestatin secretion in a genome-wide study, and its 3'-UTR polymorphism T+3246C (rs938671) was associated with both catestatin processing from CHGA and population blood pressure. We explored the molecular mechanism of this effect by experiments with transfected chimeric photoproteins in chromaffin cells. Placing the ATP6V0A1 3'-UTR downstream of a luciferase reporter, we found that the C (variant) allele decreased overall gene expression. The 3'-UTR effect was verified by coupled in vitro transcription/translation of the entire/intact human ATP6V0A1 mRNA. Chromaffin granule pH, monitored by fluorescence of CHGA/EGFP chimera during vesicular H(+)-ATPase inhibition by bafilomycin A1, was more easily perturbed during coexpression of the ATP6V0A1 3'-UTR C-allele than the T-allele. After bafilomycin A1 treatment, the ratio of CHGA precursor to its catestatin fragments in PC12 cells was substantially diminished, though the qualitative composition of such fragments was not affected (on immunoblot or matrix-assisted laser desorption ionization (MALDI) mass spectrometry). Bafilomycin A1 treatment also decreased exocytotic secretion from the regulated pathway, monitored by a CHGA chimera tagged with embryonic alkaline phosphatase. 3'-UTR T+3246C created a binding motif for micro-RNA hsa-miR-637; cotransfection of hsa-miR-637 precursor or antagomir/inhibitor oligonucleotides yielded the predicted changes in expression of luciferase reporter/ATP6V0A1-3'-UTR plasmids varying at T+3246C. The results suggest a series of events whereby ATP6V0A1 3'-UTR variant T+3246C functioned: ATP6V0A1 expression probably was affected through differential micro-RNA effects, altering vacuolar pH and consequently CHGA processing and exocytotic secretion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.