Abstract

Causality is a fundamental part of reasoning to model the physics of an application domain, to understand the behaviour of an agent or to identify the relationship between two entities. Causality occurs when an action is taken and may also occur when two happenings come undeniably together. The study of causal inference aims at uncovering causal dependencies among observed data and to come up with automated methods to find such dependencies. While there exist a broad range of principles and approaches involved in causal inference, in this position paper we argue that it is possible to unify different causality views under a common framework of symbolic learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.