Abstract

We describe a first order axiom set which yields the classical first order Euclidean geometry of Tarski when used with classical logic, and yields an intuitionistic (or constructive) Euclidean geometry when used with intuitionistic logic. The first order language has a single six place atomic predicate and no function symbols. The intuitionistic system has a computational interpretation in recursive function theory, that is, a realizability interpretation analogous to those given by Kleene for intuitionistic arithmetic and analysis. This interpretation shows the unprovability in the intuitionistic theory of certain “nonconstructive” theorems of the classical geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.