Abstract
We discuss the organization of frontal matrices in multifrontal methods for the solution of large sparse sets of unsymmetric linear equations. In the multifrontal method, work on a frontal matrix can be suspended, the frontal matrix can be stored for later reuse, and a new frontal matrix can be generated. There are thus several frontal matrices stored during the factorization, and one or more of these are assembled (summed) when creating a new frontal matrix. Although this means that arbitrary sparsity patterns can be handled efficiently, extra work is required to sum the frontal matrices together and can be costly because indirect addressing is requred. The (uni)frontal method avoids this extra work by factorizing the matrix with a single frontal matrix. Rows and columns are added to the frontal matrix, and pivot rows and columns are removed. Data movement is simpler, but higher fill-in can result if the matrix cannot be permuted into a variable-band form with small profile. We consider a combined unifrontal/multifrontal algorithm to enable general fill-in reduction orderings to be applied without the data movement of previous multifrontal approaches. We discuss this technique in the context of a code designed for the solution of sparse systems with unsymmetric pattern.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.