Abstract

We consider a combined IPM–SQP method to solve smooth nonlinear optimization problems, which may possess a large number of variables and a sparse Jacobian matrix of the constraints. Basically, the algorithm is a sequential quadratic programming (SQP) method, where the quadratic programming subproblem is solved by a primal-dual interior point method (IPM). A special feature of the algorithm is that the quadratic programming subproblem does not need to become exactly solved. To solve large optimization problems, either a limited-memory BFGS update to approximate the Hessian of the Lagrangian function is applied or the user specifies the Hessian by himself. Numerical results are presented for the 306 small and dense Hock-Schittkowski problems, for 13 large semi-linear elliptic control problems after a suitable discretization, and for 35 examples of the CUTEr test problem collection with more than 5000 variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.