Abstract
Pipelines are integral components for storing and transporting liquid and gaseous petroleum products. Despite being durable structures, ruptures can still occur, resulting not only in financial losses and energy waste but, most importantly, in immeasurable environmental disasters and possibly in human casualties. The objective of the ESTHISIS project is the development of a low-cost and efficient wireless sensor system for the instantaneous detection of leaks in metallic pipeline networks transporting liquid and gaseous petroleum products in a noisy industrial environment. The implemented methodology is based on processing the spectrum of vibration signals appearing in the pipeline walls due to a leakage effect and aims to minimize interference in the piping system. It is intended to use low frequencies to detect and characterize leakage to increase the range of sensors and thus reduce cost. In the current work, the smart sensor system developed for signal acquisition and data analysis is briefly described. For this matter, two leakage detection methodologies are implemented. A 2D-Convolutional Neural Network (CNN) model undertakes supervised classification in spectrograms extracted by the signals acquired by the accelerometers mounted on the pipeline wall. This approach allows us to supplant large-signal datasets with a more memory-efficient alternative to storing static images. Second, Long Short-Term Memory Autoencoders (LSTM AE) are employed, receiving signals from the accelerometers, and providing an unsupervised leakage detection solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.