Abstract

In this paper we first consider a special class of nonhomogeneous and anisotropic Helmholtz equation with variable coefficients and the source term. Combined with local spectral element method, a generalized plane wave discontinuous Galerkin method for the discretization of such Helmholtz equation is designed. Then we define new generalized plane wave basis functions for two-dimensional anisotropic Helmholtz equation with the variable coefficient. Besides, the error estimates of the approximation solutions generated by the proposed discretization method are derived. Especially, the orders of the condition number ρ of the anisotropic matrix in the error estimates are optimal. Finally, numerical results verify the validity of the theoretical results, and indicate that the new method possesses high accuracy and is slightly affected by the pollution effect for the large wavenumbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.