Abstract

We present a combined simulation method of single-component artificial force induced reaction (SC-AFIR) and effective screening medium combined with the reference interaction site model (ESM-RISM), termed SC-AFIR+ESM-RISM. SC-AFIR automatically and systematically explores the chemical reaction pathway, and ESM-RISM directly simulates the precise electronic structure at the solid-liquid interface. Hence, SC-AFIR+ESM-RISM enables us to explore reliable reaction pathways at the solid-liquid interface. We applied it to explore the dissociation pathway of an H2O molecule at the Cu(111)/water interface. The reaction path networks of the whole reaction and the minimum energy paths from H2O to H2 + O depend on the interfacial environment. The qualitative difference in the energy diagrams and the resulting change in the kinematically favored dissociation pathway upon changing the solvation environments are discussed. We believe that SC-AFIR+ESM-RISM will be a powerful tool to reveal the details of chemical reactions in surface catalysis and electrochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.