Abstract

A pumping test at rates of up to 50 L s−1 was carried out in the 256 m-deep Florence Shaft of the Beckermet–Winscales–Florence haematite ore mine in Cumbria, UK, between 8th January and 25th March 2015. Drawdowns in mine water level did not exceed 4 m and the entire interconnected mine complex behaved as a single reservoir. Pumping did, however, induce drawdowns of around 1 m in the St. Bees Sandstone aquifer overlying the Carboniferous Limestone host rock. During a second phase of the pumping test, a proportion of the 11.3–12 °C mine water was directed through a heat pump, which extracted up to 103 kW heat from the water and recirculated it back to the top of the shaft. Provided that an issue with elevated arsenic concentrations (20–30 µg L−1) can be resolved, the Florence mine could provide not only a valuable resource of high-quality water for industrial or even potable uses, it could also provide several hundred to several thousand kW of ground sourced heating and/or cooling, if a suitable demand can be identified. The ultimate constraint would be potential hydraulic impacts on the overlying St Bees Sandstone aquifer. The practice of recirculating thermally spent water in the Florence Shaft produced only a rather modest additional thermal benefit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call