Abstract

Bone samples from a Bronze age necropolis in Northern Italy, exposed to different combustion temperatures, were submitted to XRD (X-ray Diffraction), PIXE (Particle Induced X-ray Emission) and PIGE (Particle Induced Gamma Ray Emission) analyses in order to obtain information about their diagenetic state. Structural carbonate was then extracted by acid hydrolysis and used for 14C-AMS (Accelerator Mass Spectrometry) dating. These analytical techniques permitted the study of the effects of the combustion temperature on the crystallinity of the bone apatite and on its elemental chemical composition in terms of major, minor and trace elements. The results indicate that combustion at temperatures above ∼700°C induces changes in the bone crystalline structure, reducing the diagenetic uptake of elements from the burial environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.