Abstract

An acoustic black hole (ABH) structure has a gradual impedance gradient due to the thickness of the section decreasing as a power law, which shows excellent wave gathering and energy dissipation effect. To enhance the vibration suppression ability, periodic ABHs are proposed recently. A virtual spring-energy method (VEM) is adopted to handle the periodic boundary condition of periodic ABHs. The accuracy of the method is verified through the finite element method. The band gap of infinite periodic ABH beam and vibration transmission of finite periodic ABH beam are analyzed. For finite periodic ABH beams, the size of cells affects the attenuation band of vibration transmission, and the number of cells affects the amplitude. There is a linear superposition characteristic between the attenuation amplitude and the number of cells. The effect of damping layer on beams with different cross sections is also discussed. Finally, a combined ABH beam with damping layers of different cell sizes is proposed to achieve wide transmission attenuation bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.