Abstract

A combined molecular dynamics (MD)+quantum mechanics (QM) method for studying processes on ionic surfaces is presented. Through the combination of classical MD and ab initio embedded-cluster calculations, this method allows the modeling of surface processes involving both the structural and dynamic features of the substrate, even for large-scale systems. The embedding approach used to link the information from the MD simulation to the cluster calculation is presented, and rigorous tests have been carried out to ensure the feasibility of the method. The electrostatic potential and electron density resulting from our embedded-cluster model have been compared with periodic slab results, and confirm the satisfying quality of our embedding scheme as well as the importance of applying embedding in our combined MD+QM approach. We show that a highly accurate representation of the Madelung potential becomes a prerequisite when the embedded-cluster approach is applied to temperature-distorted surface snapshots from the MD simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call