Abstract

First, microRNA (miR) molecules were screened in transplant biopsies and urine sediments of patients with acute rejection and patients without rejection and stable graft function. Second, the expression of 15 selected miRs was quantified in an independent set of 115 urine sediments of patients with rejection and 55 urine sediments of patients without histological signs of rejection on protocol biopsy. Additionally, CXCL-9 and CXCL-10 protein levels were quantified in the urine supernatant. Levels of miR-155-5p (5.7-fold), miR-126-3p (4.2-fold), miR-21-5p (3.7-fold), miR-25-3p (2.5-fold), and miR-615-3p (0.4-fold) were significantly different between rejection and no-rejection urine sediments. CXCL-9 and CXCL-10 levels were significantly elevated in urine from recipients with rejection. In a multivariable model (sensitivity: 89.1%, specificity: 75.6%, area under the curve: 0.94, P < 0.001), miR-155-5p, miR-615-3p, and CXCL-9 levels were independent predictors of rejection. Stratified 10-fold cross validation of the model resulted in an area under the curve of 0.92. A combined urinary microRNA and chemokine profile discriminates kidney transplant rejection from stable graft conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.