Abstract

The prediction of the total resistance of planing crafts at high speeds is very important. In this paper, a combined method is investigated for determining the hydrodynamic characteristics of planing crafts in the calm water. The study consists of a potential-based boundary element method (BEM) for the induced pressure resistance, the boundary layer theory for the frictional resistance and practical method for the spray resistance. The planing surface is represented by a number of elements with constant velocity potential at each element. The unknown-induced pressure is obtained by using the free surface elevation condition and the Kutta condition at the transom stern. Hydrodynamic-induced resistance and lift are determined by the calculated dynamic pressure distributions. The boundary layer analysis method is based on calculations of the momentum integral equation applied to obtain the frictional resistance. A particular practical approach is introduced to present the region of the upwash geometry for the spray. A numerical program has been developed for the present research and applied to the hull form of the craft. Four different hull forms of Series 62 model 4666 planing craft are presented. It is shown that the present combined method is efficient and the results are in good agreement with the experimental measurements over a wide range of volumetric Froude numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call