Abstract

We have developed new thiadiazole-containing Schiff base derivatives and examined their ability to inhibit α-amylase and α-glucosidase. Among the members of series, analogue 1 showed excellent inhibitory potential (IC50 = 1.60 ± 0.20 and 2.40 ± 0.10 µM for α-amylase and α-glucosidase) as compare to standard Acarbose (IC50 = 5.30 ± 0.20 and 6.10 ± 0.10 µM). Trifluoromethyl substituted analogue-1 showed best properties because of hydrogen bond formation. Analogue 3 and 9 were also found potent against the target enzymes. All the compounds were investigated for their antibacterial and antifungal activity. Analogue 1, 3 and 9 exhibited bacterial inhibition of 42.3 %, 40.1 %, 38.2 %, and 36.5 %, respectively in contrast to streptomycin (44 %). Analogue 1, 4 and 9 exhibited excellent anti-fungal potency of 43.4, 31.9 and 34.3 %, respectively as compared to standard terinafine (50.6675 %). Scaffolds (1–12) were analyzed through HREI-mass spectrometry, 13C NMR, and 1H NMR. The functioning of active interacting residues for the enzymes was determined by molecular docking (MD), and it was found that thiadiazole bearing Schiff base derivatives could be considered suitable anti-diabetic drugs. ADMET and DFT analysis was also performed to determine stability, drug properties and electronic properties (electrophilic, nucleophilic, HOMO, LUMO) of the synthesized compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.