Abstract

In the near future robotic systems will be playing an increasingly important role in space applications such as repairing, refueling, re-orbiting spacecraft and cleaning up the increasing amount of space debris. Space Manipulator Systems (SMSs) are robotic systems made of a platform (which has its own actuators such as thrusters and reaction wheels) equipped with one or more deployable arms. The present paper focuses on the issue of maintaining a stable first contact between the arms terminal parts (i.e. the end-effectors) and a target satellite, before the actual grasp is performed. The selected approach is a modified version of the Impedance Control algorithm, in which the end-effector is controlled in order to make it behave like a mass-spring-damper system regardless of the reaction motion of the base, so to absorb the impact energy. The usual approach consists in considering a point mass target and one-dimensional contact dynamics; however, the contact between the chaser and the target could generate a perturbation on the attitude of the target. On account of this, in the present work a more realistic scenario, consisting in a 2D rigid target and a relevant 2D contact dynamics, is considered. A two-arm configuration of the SMS is modelled and its effectiveness analyzed. The performance of the proposed control architecture is evaluated by means of a co-simulation involving the MSC Adams multibody code (for describing the dynamics of the space robot and target) together with Simulink (for the determination of the control actions). The co-simulation is a particularly useful tool to implement robust control applied to detailed dynamic systems. Several numerical results complete the work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call