Abstract

AbstractThe effectiveness of a packaging solution for the pharmaceutical and food industry is dependent on the integrity of the constituent layers and the interfaces formed between them. The deconvolution and analysis of the many intimate layers found in packaging is analytically challenging, requiring techniques capable of identifying sub‐micron regions. Here we have characterized the chemical and physical nature of the layers in a multilayer packaging system along with the interfaces, using a combination of high‐resolution atomic force microscopy (AFM), microthermal analysis using scanning thermal microscopy (SThM), and Fourier transform infrared (FT‐IR) spectroscopy. In particular, localized thermal analysis is shown to reveal the thermal transitions of the individual layers, but it was found that care must be exercised when melting through one layer to the next, as this can result in overestimates of melting temperatures of the underlying layer due to excess power loss from the SThM probe to the already molten top layer surrounding the probe. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.